1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
| #include <iostream> #include <opencv2/opencv.hpp> using namespace std;
void GammaGrayTrans(const cv::Mat& src, cv::Mat& dst, float c, float gamma) { float grayTable[256]; for (int i = 0; i < 256; i++) { grayTable[i] = c * pow(i, gamma); }
int temp = 0; for (int i = 0; i < src.rows; i++) for (int j = 0; j < src.cols; j++) { temp = src.at<uchar>(i, j); dst.at<float>(i, j) = grayTable[temp]; }
cv::normalize(dst, dst, 0, 255, cv::NORM_MINMAX); dst.convertTo(dst, CV_8UC1); }
void getCellVector(cv::Mat& angleImg,cv::Mat& magnitudeImg,cv::Size cellSize, std::vector<std::vector<double>>& cellVector) { for(int cell_i=0; cell_i < angleImg.rows; cell_i=cell_i+cellSize.height) for (int cell_j = 0; cell_j < angleImg.cols; cell_j=cell_j + cellSize.width) { std::vector<double> table(9); int temp_floor = 0; double scale = 0; for (int i = cell_i; i < cell_i + cellSize.height; i++) for (int j = cell_j; j < cell_j + cellSize.width; j++) { temp_floor = std::floor(angleImg.at<float>(i, j) / 20); switch (temp_floor) { case 0: scale = (angleImg.at<float>(i, j) - 0) / 20; table[0] += magnitudeImg.at<float>(i, j) * scale; table[1] += magnitudeImg.at<float>(i, j) * (1 - scale); break; case 1: scale = (angleImg.at<float>(i, j) - 20) / 20; table[1] += magnitudeImg.at<float>(i, j) * scale; table[2] += magnitudeImg.at<float>(i, j) * (1 - scale); break; case 2: scale = (angleImg.at<float>(i, j) - 40) / 20; table[2] += magnitudeImg.at<float>(i, j) * scale; table[3] += magnitudeImg.at<float>(i, j) * (1 - scale); break; case 3: scale = (angleImg.at<float>(i, j) - 60) / 20; table[3] += magnitudeImg.at<float>(i, j) * scale; table[4] += magnitudeImg.at<float>(i, j) * (1 - scale); break; case 4: scale = (angleImg.at<float>(i, j) - 80) / 20; table[4] += magnitudeImg.at<float>(i, j) * scale; table[5] += magnitudeImg.at<float>(i, j) * (1 - scale); break; case 5: scale = (angleImg.at<float>(i, j) - 100) / 20; table[5] += magnitudeImg.at<float>(i, j) * scale; table[6] += magnitudeImg.at<float>(i, j) * (1 - scale); break; case 6: scale = (angleImg.at<float>(i, j) - 120) / 20; table[6] += magnitudeImg.at<float>(i, j) * scale; table[7] += magnitudeImg.at<float>(i, j) * (1 - scale); break; case 7: scale = (angleImg.at<float>(i, j) - 140) / 20; table[7] += magnitudeImg.at<float>(i, j) * scale; table[8] += magnitudeImg.at<float>(i, j) * (1 - scale); break; case 8: table[8] += magnitudeImg.at<float>(i, j); break; } } cellVector.push_back(table); } }
void getHOGDescriptor(cv::Mat& src, std::vector<double>& HOGVector, cv::Mat& gammaOut, cv::Mat& magOut, cv::Mat& angOut) { cv::Mat gammaImg(src.size(),CV_32F); GammaGrayTrans(src, gammaImg, 1, 0.5); gammaOut = gammaImg.clone();
cv::Mat sobel_x, sobel_y; cv::Sobel(gammaImg, sobel_x, CV_32F, 1, 0); cv::Sobel(gammaImg, sobel_y, CV_32F, 0, 1); cv::Mat magnitudeImg(sobel_x.size(),CV_32F), angleImg(sobel_x.size(), CV_32F); double temp_mag = 0, temp_angle = 0; for (int i = 0; i < sobel_x.rows; i++) for (int j = 0; j < sobel_x.cols; j++) { temp_mag = cv::abs(sobel_x.at<float>(i, j)) + cv::abs(sobel_y.at<float>(i, j)); temp_angle = cv::fastAtan2(sobel_y.at<float>(i, j), sobel_x.at<float>(i, j));
magnitudeImg.at<float>(i, j) = temp_mag;
if ((temp_angle > 180)) temp_angle -= 180; angleImg.at<float>(i, j) = temp_angle; }
magOut = magnitudeImg.clone(); angOut = angleImg.clone();
cv::Size cellSize(8,8); std::vector<std::vector<double>> cellVector; getCellVector(angleImg, magnitudeImg, cellSize, cellVector);
std::vector < std::vector < double >> blockVector; int block_i_end = angleImg.rows / cellSize.height; int block_j_end = angleImg.cols / cellSize.width; for (int block_i = 0; block_i < block_i_end-1; block_i++) { for (int block_j = 0; block_j < block_j_end-1; block_j++) { std::vector<double> block; block.insert(block.end(), cellVector[block_i*block_j_end+block_j].begin(), cellVector[block_i * block_j_end + block_j].end()); block.insert(block.end(), cellVector[block_i * block_j_end + block_j + 1].begin(), cellVector[block_i * block_j_end + block_j + 1].end()); block.insert(block.end(), cellVector[(block_i+1) * block_j_end + block_j].begin(), cellVector[(block_i+1) * block_j_end + block_j].end()); block.insert(block.end(), cellVector[(block_i+1) * block_j_end + block_j + 1].begin(), cellVector[(block_i+1) * block_j_end + block_j + 1].end()); cv::normalize(block, block, 1, cv::NORM_L1); blockVector.push_back(block); } }
for (int i = 0; i < blockVector.size(); i++) { for (int j = 0; j < blockVector[i].size(); j++) { HOGVector.push_back(blockVector[i][j]); } } }
void visualizeHOG(cv::Mat& img, std::vector<double>& hogVector, cv::Size winSize) { const int CELL_SIZE = 8; const int BIN_NUM = 9; const float DEG_PER_BIN = 180.0 / BIN_NUM; const float MAX_LEN = 6.0; cv::Mat hogImg = img.clone(); cv::cvtColor(hogImg, hogImg, cv::COLOR_GRAY2BGR); int cellsInX = winSize.width / CELL_SIZE; int cellsInY = winSize.height / CELL_SIZE; for (int cy = 0; cy < cellsInY - 1; cy++) { for (int cx = 0; cx < cellsInX - 1; cx++) { int cellOffset = (cy * (cellsInX - 1) + cx) * BIN_NUM * 4; for (int by = 0; by < 2; by++) { for (int bx = 0; bx < 2; bx++) { int cellY = cy * CELL_SIZE + by * CELL_SIZE; int cellX = cx * CELL_SIZE + bx * CELL_SIZE; cv::Point center(cellX + CELL_SIZE/2, cellY + CELL_SIZE/2); for (int bin = 0; bin < BIN_NUM; bin++) { float binValue = hogVector[cellOffset + (by * 2 + bx) * BIN_NUM + bin]; float angle = bin * DEG_PER_BIN; float radian = angle * CV_PI / 180.0; float dx = cos(radian) * binValue * MAX_LEN; float dy = sin(radian) * binValue * MAX_LEN; cv::Point direction(static_cast<int>(dx), static_cast<int>(dy)); cv::line(hogImg, center, center + direction, cv::Scalar(0, 255, 0), 1, cv::LINE_AA); } } } } } cv::imshow("HOG Visualization", hogImg); }
int main() { string filepath = "/home/song/object_detect_lab/HOGtestCPP/pic/miku.jpg"; cv::Mat src = cv::imread(filepath, cv::IMREAD_GRAYSCALE); if (src.empty()) { std::cout << "imread error" << std::endl; return -1; } cv::resize(src, src, cv::Size(64, 128)); cv::imshow("Original Image", src); cv::Mat gammaImg, magImg, angImg; std::vector<double> HOGVector; getHOGDescriptor(src, HOGVector, gammaImg, magImg, angImg); cv::imshow("1Gamma Transform", gammaImg); cv::Mat magShow; cv::normalize(magImg, magShow, 0, 255, cv::NORM_MINMAX); magShow.convertTo(magShow, CV_8U); cv::imshow("2Gradient Magnitude", magShow); cv::Mat angShow; angImg.convertTo(angShow, CV_32F); angShow = angShow * 255.0 / 180.0; angShow.convertTo(angShow, CV_8U); cv::imshow("3Gradient Orientation", angShow); std::cout << "HOG Descriptor Size: " << HOGVector.size() << std::endl; std::cout << "First 10 values: "; for(int i = 0; i < 10 && i < HOGVector.size(); i++) { std::cout << HOGVector[i] << " "; } std::cout << std::endl; visualizeHOG(src, HOGVector, src.size()); cv::waitKey(0); return 0; }
|